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ABSTRACT agency cannot indiscriminately open up its database to all

Literature on information integration across databases tacitly as- other agencies.

sumes that the data in each database can be revealed to the other ® Privacy: Privacy legislation and stated privacy policies place

databases. However, there is an increasing need for sharing infor- limits on information sharing. However, it is still desirable

mation across autonomoustities in such a way that no informa- to mine across databases while respecting privacy limits.

tion apart from the answer to the query is revealed. We formalize ~We propose a new paradigm ofinimal necessary informa-

the notion of minimal information sharing across private databases,tion sharing across private databases. Intuitively, given a database

and develop protocols for intersection, equijoin, intersection size, query spanning multiple private databases, we wish to compute the

and equijoin size. We also show how new applications can be built answer to the query without revealing any aideaal information

using the proposed protocols. apart from the query result. We will sometimes relax this constraint
to allow some minimal additional information to be revealed.

1. INTRODUCTION 1.1 Motivating Applications

Information integration has long been an area of active database We give two prototypical applications to make the above
research [12, 16, 21, 27, 48]. So far, this literature has tacitly as- paradigm concrete.
sumed that the information in each database can be freely shared
However, there is now an increasing need for computing queries

across databases belonging to autonomofigemin such a way has some intellectual property it might want to license. However,

that no more information than necessary is revealed from each . ) R
database to the other databases. This need is driven by severaﬁ would not_llke o reveal Its complet(_a tech_nology shopping list,
trends: nor wouldS like to re\_/eal aII_lts u_npubllshed m_t_ellectual property.
Rather, they would like to first find the specific technologies for
¢ End-to-end Integration: E-business on demand requires which there is a match, and then reveal information only about
end-to-end integration of information systems, from the sup- those technologies. This problem can be abstracted as follows.
ply chain to the CUStomer'faCing Systems. This integration We have two databas@R andDS’ where each database con-
occurs across autonomous enterprises, so full disclosure oftains a set of documents. The documents have been preprocessedto

information in each database is undesirable. only include the most significant words, using some measure such

e Outsourcing: Enterprises are outsourcing tasks that are not as term frequency times inverse documentfrequency [41]. We wish
part of their core competency. They need to integrate their to find all pairs of similar documenttr € Dr andds € Ds,

database systems for purposes such as inventory control. without revealing the other documents. In database terminology,
we want to compute the join dPr and Ds using the join predi-

catef(|dr Ndsl,|dr|, |ds|) > 7, for some similarity functiorf

and threshold. The functionf could beldrNds|/(|dr| + |ds]),

for instance.
ing. Many applications map to this abstraction. For example, two

¢ Security: Government agencies need to share information government agencies may want to share documents, but only on
for devising effective security measures, both within the a need-to-know basis. They would like to find similar documents
same government and across governments. However, ancontained in their repositories in order to initiate their exchange.

*Currently at Cornell University, Ithaca, NY 14853. Application 2: Medical Research Imagine a future where many
people have their DNA sequenced. A medical researcher wants to
validate a hypothesis connecting a DNA sequebceith a reac-
tion to drugG. People who have taken the drug are partitioned
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bear this notice and the full citation on the first page. To copy otherwise, to DNA sequences and medical histories are stored in databases in
repub_lls_h, to post on servers or to redistribute to lists, requires prior specific autonomous enterprises. Due to privacy concerns, the enterprises

permission and/or a fee. . - - . Lo ,
do not wish to provide any information about an individual's DNA
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Application 1: Selective Document Sharing EnterpriseR is
shopping for technology and wishes to find out if enterpi§se

e Simultaneously compete and cooperatelt is becoming
common for enterprises to cooperate in certain areas and
compete in others, which requires selective information shar-




Assume that the tabl&r(personid, pattern) stores whether a
person’s DNA contains pattef andTs (personid, drug, reaction) Cryptographic Protocol
captures whether a person took diignd whether the person had

an adverse reactioffir andT’s belong to two different enterprises.
The researcher wants to get the answer to the following query. Secure Libraries
Commu- (including Database
select pattern, reaction, count(*) nication encryption
from Tw,Ts primitives)
where Tr.personid =Ts.personid and T's.drug = “true”

group by Tg.patternTs.reaction
Operating System

We want the property that the researcher should get to know the
counts and nothing else, and the enterprises should not learn any
new information about any individual. Figure 1: System Components

1.2 Current Techniques

We discuss next some existing techniques that one might use for This behavior is also referred to asmi-honesor passivebehav-

building the above applications, and why they are inadequate. lor. _ ) .
Figure 1 shows the different components required for building a

o Trusted Third Party : The main parties give the data 0 a  gystem for information integration with minimal sharing. Our fo-
trusted” third party and have the third party do the compu- s will be on the cryptographic protocol. We assume the use of

tation [7, 30]. However, the third party has to templetely  gandard libraries or packages for secure communication and en-
trusted, both with respect to intent and competence agalnstcryption primitives.

security breaches. The level of trust required is too high for
this solution to be acceptable. 2.2 Problem Statement

¢ Secure Multi-Party Computation: Given two parties with We now formally state the problem we study in this paper.

inputsz andy respectively, the goal of secure multi-party  proplem Statement (Ideal) Let there be two partieR (receiver)
computation is to compute a functiof{z, y) suchthatthe 5545 (sender) with databasd®z and Ds respectively. Given a
two parties learn onlf(z, y), and nothing else. See [26, 34]  yatabase quer@ spanning the tables iBr andDs, compute the
for a discussion of various approaches to this problem. answer toQ and return it toR without revealing any adtbnal
Yao [49] showed that any multi-party computation can be information to either party. a

solved by building a combinatorial circuit, and simulating  prophiem Statement (Minimal Sharing) Let there be two parties
that circuit. A variant of Yao's protocol is presented in [37] i 5045 with database®r andD's respectively. Given a database
where the number of oblivious transfers is proportional to queryQ spanning the tables iPr andDs, and some categories
the number of inputs and not the size of the circuit. We show ¢ information/, compute the answer @ and retumn it taR with-

i_n Appendix A that our spgciglized a!gorithr_ns are substan- ¢ revealing any additional information to either party except for
tially faster than using a circuit, and in particular, the com-

L R ; ; information contained id. m|
munication costs for circuits make them impractical for our
problems. For example, if the quer® is a joinTr X Ts over two ta-
blesTr andTs, the additional informatiod might be the number
1.3 Paper Outline of records in each table[Tr| and|Ts|. Note that whateveR

can infer from knowing the answer to the qué&gyand the addi-

tional information! is fair game. For instance, if the quety is

an intersectio’Vs N Vg between two set®¥s andVg, then for all

v € (VR — (Vs NVRr)), R knows that these values were nolp.
We assume that the quey is revealed to both parties. One

The rest of the paper is organized as follows. We formally state
the problem and the scope of this paper in Section 2. We develop
the protocol for computing the intersection of two sets in Section 3,
and extend this protocol for equijoins in Section 4. We describe

the protocols for intersection size and equijoin size in Section 5. In can think of other applications where the forma@is revealed,

Section 6, we give a cost anal_ysis_of these protoc_ols,_ and use this'but not the parameters @f (e.g., in private information retrieval
analysis to estimate the execution times of the application examplesdiscussed in Section 2.4) ' '

above. We conclude with a summary and directions for future work

in Section 7. 2.2.1 Operations
In this paper, we focus on four operations: intersection, equijoin,
2. MINIMAL INFORMATION SHARING intersection size, and equijoin size.
. Let.S have a database talffe, andR have a tabl@'r, with both
2.1 Security Model tables having a specific attributin their schemas. The attribute

We develop our solutions in a setting in which there is no third A takes its values from a given sét Let Vs be the set of values
party [26]. The main parties directly execute a protocol, which is (without duplicates) that occur ifis. A, and letVr be the set of
designed to guarantee that they do not learn any more than theyvalues occurring ifl’r.A. For eachv € Vs, let ext(v) be all
would have learnt had they given the data to a trusted third party records irfil’s whereT’s. A = v, i.e.,ext(v) is theextra information
and got back the answer. in Ts pertaining tov. We show how to compute three kinds of

We assumdonest-but-curioubehavior [26]. The parties fol- queries ovefl’'s andTr:
low the protocol properly with the exception that they may keep a ¢ Intersection:Party R learns the séfs N Vr, the valugVs|,
record of all the intermediate computations and received messages, and nothing else; part§ learns|Vz| and nothing else (Sec-
and analyze the messages to try to learn additional information. tion 3).



¢ Equijoin: PartyR learnsVsNVg, ext(v) forallv € Vs N Vg, zontally and vertically partitioned data respectively.
|Vs|, and nothing else; part§ learns|Vz| and nothing else The context for the work presented in this paper is our effort to
(Section 4). design information systems that protect the privacy and ownership

o Intersection SizeParty R leams the values dVs N Va|, of individual information while not impeding the flow of informa-

|Vs|, and nothing else; part§ learns|Vz| and nothing else tion. Our other related papersinclude [2, 3, 4, 5].
(Section 5).

Thus in the terminology of our problem statement above, the query 3. INTERSECTION

Q for the three problems corresponddfo N Vg, T's X Tr (with 31 A Simple but Incorrect. Protocol

ext(v) used to compute the join), afids N Vr| respectively. In all ) ! !

three cases, the additional informatibconsists of Vr| and|Vs|.
We also extend the intersection size protocol to obtaiegun-

join sizeprotocol that computel’s M Tr| (Section 5.2). How-

A straightforward idea for computing the intersectiga N Vr
would be to use one-way hash functions [38]. Here is a simple
protocol thatappeargo work:

ever, R learns|Vs|, the distribution of duplicates iff's. 4, and 1. Both .S and R apply hash functiork to their sets, yielding
based on the distribution of duplicates, some subset of informa- Xs = h(Vs) ={h(v) |v € Vs}and

tion in Vs N Va. S learns|Vz| and the distribution of duplicates in Xr =h(Vr) ={h(v) |v € Vr}.

Tr.A. 2. § sendsits hashed s&ts to R.

2.3 Limitations 3. R sets aside all € Vg for whichk(v) € Xs; these values

form the set’s N Vr.
Multiple Queries While we provide guarantees on how much the Unfortunately, R can learn a lot more aboldfs (with honest-
parties learn from a single query, our techniques do not address thebut-curious behavior). For any arbitrary valwe V — (Vs N Vr),
question of what the parties might learn by combining the results R can simply computé(v) and check whethek(v) € Xs to
of multiple queries. The first line of defence against this problemis determine whether or nete Vs. In fact, if the domairi/ is small,
the scrutiny of the queries by the parties. In addition, query restric- R can exhaustively go over all possible values and completely learn
tion techniques from the statistical database literature [1, 44] can Vs.
also help. These techniques include restricting the size of query The intersection protocol we propose next fixes the deficiencies
results [17, 23], controlling the overlap amongsessive queries  of this protocol.
19], and keeping audit trails of all answered queries to detect pos- -
[sibl]e compror%isges [13]. | 3.2 Building Blocks
We first describe two building blocks used in the proposed pro-

Schema Discovery and Heterogeneity We do not address the tocols
d .

question of how to find which database contains which tables an
what the attribute names are; we assume that the database schemag 2 1 Commutative Encryption
are known. We also do not address issues of schema heterogeneity.

See [21, 29] and references therein for some approaches to these Our deflnmon of c_ommutatlve encryptlonhbelow ']? 5|m|:;51r to the
problems. constructions used in [9, 18, 20, 42] and others. Informally, a com-

mutative encryption is a pair of encryption functiofigndg such

2.4 Related Work that f(g(v)) = g(f(v)). Thush ;y using the combin:ticaf(g(v))_
. — . to encryptv, we can ensure thd cannot compute the encryption
. In [35], th_e auth_ors consn_derthe prob_lem of f'ﬁd'”g the intersec- of a value without the help of. In addition, even though the en-
tion of two lists while revealing only the intersection. They present o L .
two solutions: the first involves oblivious evaluationsrofoly- cryption is a c_omblnatlo_n of two functions, each party can apply
) : . . their function first and still get the same result.

nomials of degreex each, where: is the number of elements in
the list; the second solution requires oblivious evaluationfatin- DEFINITIONT (INDISTINGUISHABILITY). LetQ, C {0,1}*
ear polynomials. In the context of databasewiill be quite large. be a finite domain ok-bit numbers. LetD; = D; (%) and
In [28], the authors consider the problem of finding people with D, = D,(Q%) be distributions ovef,. Let.Ax(z) be an al-
common preferences, without revealing the preferences. They givegorithm that, givenz € Qx, returns either true or false. We de-
intersection protocols that are similar to ours, but do not provide fine distribution?; of random variablez € Q4 to becomputa-
proofs of security. tionally indistinguishabldrom distributionD; if for any family of

In the problem of private information retrieval [11, 14, 15, 32, polynomial-step (w.r.t) algorithms.Ay (=), any polynomiap(k),
45], the receiverR obtains thesth record from set ok records and all sufficiently large
held by the sendef without revealing to S. With the additional 1
restriction thatR should only learn the value of one record, the PrAx(z) | z ~ D1] — Pr{Aw(z) |z ~ D2] < —=
problem becomes that of symmetric private information retrieval p(k)
[25]. This literature will be useful for developing protocols for the wherez ~ D denotes that is distributed according td@, and
selection operation in our setting. Pr[A(z)] is the probaliity that Ax(z) returns true.

The problem of privacy-preserving data mining is also related. . ) T "
The randomization approach [6, 22, 40] focuses on individual pri- Throug‘;‘hout this paper, we .W'!I use |nd|st’!ngU|shabIe as short-
vacy rather than on database privacy, and reveals randomized in-hand for “computationally indistinguishable”.
formation about each record in exchange for not having to reveal pggiNiTION 2 (COMMUTATIVE ENCRYPTION). Acommuta-
the original records to anyone. More closely related is the work in tjye encryptionF is a computable (in polynomial time) function
[33] on building a decision-tree classifier across multiple databases, ¢ . Key F x Dom F — Dom F, defined on finite computable do-
without revealing the individual records in each database to the mains, that satisfies all properties listed below. We deffigtte) =
other databases. Algorithms for mining associations rules acrossf(e, z), and use ‘€,” to mean “is chosen uniformly at random
multiple databases have been described in [31] and [47] for hori- from”.



1. Commutativity: For alk, e’ € Key F we have
feofe’ :fe’of€~

2. Eachf. : Dom 7 — Dom F is a bijection.

3. The inversef- ' is also computable in polynomial time
givene.

4. The distribution ofz, f.(z),y, f-(y)) is indistinguishable
from the distribution ofz, f.(z),y, z), wherez,y,z €.
Dom F ande €, Key F.

Informally, Property 1 says that when we compositely encrypt

with two different keys, the result is the same irrespective of the

order of encryption. Property 2 says that two different values will

We assume also theDom F | is so large compared t&s U V|
that the probability of a collision isxponentially small. LefV =
| Dom F|; in the random oracle model, the proliéj that » hash
values have at least one collision equals [46]:

1—exp <%>

With 1024-bit hash values, half of which are quadratic residues, we
haveN = 2'°%*/2 = 10%°7, and forn = 1 million

1012 1012
1 —exp <——10307>

~ 10307
For real-life hash functions, a collision withiis or Vg can be

n—1

N —:
1-—
. N
=1

~
~

Pr{collision]

~
~

Pricollision] = 107%%%,

never have the same encrypted value. Property 3 says that givendetected by the server at the start of each protocol by sorting the

an encrypted valug.(z) and the encryption key, we can findz
in polynomial time® Property 4 says that given a valueand its
encryptionf.(z) (but not the key), for a new valuey, we can-
not distinguish betweefi(y) and a random valugin polynomial
time. Thus we can neither encrypnor decryptf.(y) in polyno-
mial time. Note that this property holds onlyifis a random value
from Dom F, i.e., the adversary does not control the choice.of

Example 1 LetDom F be all quadratic residues modypwhere

p is a “safe” prime number, i.e., bofhandg = (p — 1)/2 are
primes. LetKey F be{1,2,...,9 — 1}. Then, assuming the De-
cisional Diffie-Hellman hypothesis (DDH) [10], the power function

fe(z) = z°mod p

is a commutative encryption:

e The powers commute:
(z% mod p)® mod p = 2% mod p = (2° mod p)¢ mod p.
e Each of the powerg. is a bijection with its inverse being

—1 _
e =

e~lmodg-

¢ DDH claims that for any generatingt() elemeny € Dom F
the distribution ofg?, g°, g°*) is indistinguishable from the
distribution 0f(g“,gb,g°>, wherea, b,c €, Key F. A 3-
tuple (g%, g%, z) from the DDH can be reduced to our 4-
tuple {(z, z°, y, 2} by takingd €, Key F and making tuple
{g%, (g*)% g¢° z). Nowa plays the role o, g* of z, andg®
of y; we test whethez = (g°) or is random. Thus, given
DDH, {z, z°, y, y°) and{z, z°, y, z) are also indistinguish-
able.

3.2.2 Hash Function

Besides a commutative encryptidfn, we need a hash function
to encode the valuesc V into z € Dom F. The hashes of values
should not cdide and $ould “look random,” i.e., there should be

hashes. If there is a collision betweer Vs andv’ € Vg, it will
cause inclusion of’ into the join (or intersection) byt and the
disclosure taR of $’s records containing.?

3.3 Intersection Protocol
Our proposed intersection protocol is as follows.

1. Both.S andR apply hash functiot to their sets:
Xs = h(Vs) andXR = h(VR)
Each party randomly chooses a secret key:
es € Key F for § ander €, Key F for R.

2. Both parties encrypt their hashed sets:
Ys = fos(Xs) = fes(h(Vs)) and
Yr = fer(XRr) = fer(R(VR)).

3. R sendstdS its encrypted s€¥r = f..(h(Vr)), reordered
lexicographically?

4. (a)S ships toR its setYs = f..(h(Vs)), reordered lexico-
graphically.
(b) S encrypts each € Yr with S’s keyes and sends back
to R pairs(y, fes(v)) = (fer(h(v)), fes(fer (h(v))))-

5. R encrypts each € Ys with er, obtaining
75 = funlfox (h(V5))) -
Also, from pairs{fey (h(v)), fes(fer(h(v)))) Obtained in
Step 4(b) forv € Vg, it creates pairgv, fe. (fex(h(v))))
by replacingf. . (h(v)) with the corresponding.

6. R selects allv € Vg for which (fe,(fer(R(v))) € Zs;
these values form the s& N Vk.
3.4 Proofs of Correctness and Security

STATEMENT 1. Assuming there are no hash collisioSdgarns

no dependency between them that could help encrypt or decryptthe siz§Vr| and R learns the siz¢Vs| and the seVs N V.
one hashed value given the encryption of another. Since we apply  prooF. By definition, f.; and., commute and are bijective.

commutative encryption to the hashed vallés) instead ofv, the
input for the encryption function will appear random, and we will

be able to use Property 4 of commutative encryption to prove that

our protocols are secure.

In the proofs of our security statements we shall rely on the stan-

dardrandom oracle moddB, 24, 46]. We assume that our hash
functionh : V' — Dom F is ideal, which means th&i(v) can be
considered computed by a random oracle: every fifad is eval-
uated for a new € V, an independent random €, Dom F is
chosenfoe: = h(v).

1We only need this property for the join protocol, not for the inter-
section protocol.

which means thaRl does recover the correct 9é¢ N Vg.

Assuming that hash functionhas no collisions o¥s U Vg,
vE€VsNVr Iff v€&Vrand (fe; 0 fer)(h(v)) € Zs,

Both
parties also learn the sizéigr| and|Vs|, since|Vr| = |Yr| and
[Vs| =1|Ys|. O

2For the join protocol (Section 4R can check whether there was
a collision betweem € Vs andv’ € Vg by havings$ include the

valuev in ext(v).

%If we did not reorder and instead sent the values in the same or-
der as the values Wiz, significant additional information could be
revealed.



Next we prove that, assuming the parties follow the protocol cor-

SinceD}_; andD7 are indistinguishable fof; = m+1...n,

rectly, they learn nothing else about the other’s sets. We first show and because is bounded by a polynomia?}; is also indistin-

that even given

(#

Tm

fe(xm)> and Tm+1,

there is no polynomial-time algorithm that can determine whether

or not a value: is in fact fo(zm41).

LEMMA 1. Forpolynomiakbr, the distribution of th@ x m-tuple

< T Tm—1 Tom >

fe(xl) fe(xm—l) fe(xm)

is indistinguishable from the distribution of the tuple
< T Tm—1 xm>
fe(xl) fe(xm—l) Zm !

wherev: : z; €, Dom F, 2z, €~ Dom F, ande €, Key F.

PROOF Let us denote the distribution of the upper tuple by
D,., and the distribution of the lower tuple 1%,,.—,. If D,, and
D.—1 are distinguishable by some polynomial algoritnthen
{(z, fe(z),vy, fe(y)) and{z, f.(z),y, z) from Property 4 of com-
mutative encryption are also distinguishable by the following algo-
rithm that takegz, f.(z),y, ) as argument:

1. Fore =1...m—1, letz; = f,(z) andz; = fe,(fe(z)),

wheree; €, Key F;

2. Letz,, = y andz,, = u;

1 Tom
21 Zm
to algorithm.4 and output whatever it outputs.
For:=1...m—1, we have

zi = fe.(fe(@)) = fe(fe(@)) = fe(=i),

and all z; are indistinguishable from uniformly rando(from
Property 4 of commutative encryption). Therefore the distribu-
tion of the tuple given tad is indistinguishable fronD,,, when

(z, fe(z),y,u) is distributed as{z, fe(z),y, f(y)), and from
D1 When(z, fc(z),y,u) is distributed asz, f-(z),y, z). So
the assumption th&®,,, andD,,,_; are distinguishable leads to the
contradiction that Property 4 does not hold.1

3. Submit tuple

LEMMA 2. For polynomialm andn, the distribution of the

2xn-tuple
< 1 Tm Tmt1 Tn >
fe(xl) fe(xm) fe(xm-l-l) fe(x‘n.)
is indistinguishable from the distribution of the tuple
< Z1 Tm Tm41 xn)
fe(xl) fe(xm) z‘m.-l-l Zn !

whered < m < n, Vi: z;,2; €, Dom F, ande €, Key F.

PrROOF Letus denote by, the distribution of the lower tuple;
the upper tuple’s distribution is thad2;,.

FromLemma 1, for alf = m+1...n, the distributiong? and
D}, are indistinguishable. (The firgtcolumns ofD7 are identi-
caltoD, of Lemma 1, the firs§ columns ofD}_,; are identical to
D;_, of Lemma 1, and the last— 5 columns ofD7_; andD? are
just uniformly random numbers.)

guishable from anyD;;, (where0 £ m < n). Let. 4 be an algo-
rithm that pretends to distinguigl? from D7, and returns true or
false. Now

Pr[Ax(T) | T ~ D7] — Pr[Ax(T) | T ~ D7.] 1)

> (Pr[Ak(T) | T ~ D] — Pr[Ax(T) | T ~ Df_l])

1=m+1

Herek is the number of bits in the tuple values. Consider any
polynomialp(k); we want to prove thaiko Vk > ko the differ-
ence (1) is bounded by/p(k). Letp'(k) = np(k), which is also

a polynomial. We hav&¥; = m+1...n 3k; Vk > k; thes-th
difference in the telescoping sum is bounded.ify’ (k). Now set

ko = max; k;, and we are done:

3 (Pr[Ak(T) | T ~ D] — Pr[Ax(T) | T ~ Df_l])

1=m+1
1

p(k)

ThereforeD;, andD;,, are computationally indistinguishablel]

1 n
<2 om < e

STATEMENT 2. The intersection protocol is secure if both par-
ties are semi-honest. In the erffilearns only the sizE/z|, andR
learns only the sizg/s| and the intersectioWs N Vz.

PrROOF We use a standard proof methodology fromitirparty
secure computation [26]. If, for arljs andVr, the distribution of
the S’s view of the protocol (the informatiofi gets fromR) cannot
be distinguished from a simulation of this view that uses dfdy
and|Vr|, then clearlyS cannot learn anything from the inputs it
gets fromR except for]Vr|. Note that the simulation only uses the
knowledgeS is supposed to have at the end of the protocol, while
the distinguisher also uses the inputsifi.e., Vr), but notR’s
secretkeys (i.egr). Itis important that the distinguisher be unable
to distinguish between the simulation and the real view even given
R's inputs: this precludes the kind of attack that broke the protocol
given in Section 3.1.

The simulator forS (that simulates wha$ receives fromR) is
easy to construct. At Step 3 of the protocol, the only step where
S receives anything, the simulator generdliég| random values
zi € Dom F and orders them lexicographically. In the real proto-
col, these values equgl . (h(v)) for v € Vr. Assuming that, for
all v € Vg, the hashe&(v) are distributed uniformly at random
(random oracle model), by Lemma 2 the distributions

) and ( 1

21 Zm
N —
z;=h(v;), vi€VR

whereV: : z; €, Dom F, are indistinguishable. Therefore the

real and simulated views fdf are also indistinguishable.

The simulator forR (that simulates whaR gets fromS) will
useVg, Vs N Vr and|Vs|; it also knows the hash functioh.
However, it does not havés — Vr. The simulator chooses a key
és €, Key F. In Step 4(a), the simulation creafgs as follows:

Tm

(o) 0 fonom)

2i=h(v4), vi€VR

Tm

e First, for values;; € VsNVg, the simulation addg ; (h(v:))
to Ys.

¢ Next, the simulation addd/s — Vr| random values; €.
Dom FtoYs.



In Step 4(b), the simulation uses the lgyto encrypteach € Yr.
Sincees (real view) anc s (simulation) are both chosen at ran-
dom, their distributions are identical. According to Lemma 2, one

cannot distinguish between the distribution of

(

and the distribution of

(

Z1

fés(xl)

2i=h(v4), vi€VR

Tom Tm41 Tn

fes(zm) fos(zmir) fes(zn)
z;,=h(v;), v,€Vs—Vg

z1 Tm

fés(xl) fés(xm)

2i=h(v:), v:€Vi

Tn
Zn

Tm41
Zm41

z;=h(v;), v;€Vs—Vg

Example 2 LetF be the power function over quadratic residues
modulo a safe prime, as in Example 1. If the extra information
ext(v) can also be encoded as a quadratic residue W&, =
Dom F), the encryptionX . (ext(v)) can be just a multiplication
operation:

K (ext(v))

The multiplication can be easily reversed giverand if « is uni-

Kk - ext(v).

formly random ther - ext(v) is also uniformly random (indepen-

dently ofext(v)).

4.3 Equijoin Protocol
Let Vs be the set of values (without duplicates) that occur in

The real view corresponds to the upper matrix, and the simulated 7’s. 4, and letVr be the set of values that occurfiz. A. For each

view to the lower matrix. The only difference is that some vari-
ables appear in the view encryptedfyy, , which makes the view a
efficiently-computable function of the matrix. Therefore the real
view and the simulated view are also indistinguishable, and the
statement is proven.[]

4. EQUIJOIN

We now extend the intersection protocol so that, in addition to
VsNVr, R learns some extra informatiemt(v) from S for values
v € Vs N Vg, but does not learaxt(v) for for v € Vs — Vr. To
compute the joirl’s X Tr on attributeA, we havesxt(v) contain
all the records of5’s table wherel's. A = v, i.e.,ext(v) contains
the information about the other attributesiip needed for the join.

4.1 Idea Behind Protocol

A simple, but incorrect, solution would be to encrypt the extra
informationext(v) usingh(v) as the encryption key. Since, in our
intersection protocolk(v) could not be discovered big except
for v € Vg (and similarly forS), one might think that this protocol
would be secure. While it is true tha{v) cannot be discovered
from Yr or Ys, h(v) can be discovered from the encryption of
ext). For any arbitrary value, R can computé:(v) and try de-
crypting all theext(v) usingh(v) to learn whether or nat € Vs.

In fact, if the domain is smallR can exhaustively go over all pos-
sible values and completely learn bdth andext(v) for v € Vs.

Rather then encrypt the extra information witfv ), we will en-
crypt it with a keys(v) = f.. (h(v)), wheree’s is a second se-
cret key ofS. The problem now is to allowR to learnx(v) for
v € Vg without revealing/z to .S. We do this as followsR sends
fer(h(v)) to S, andS sends baclf.. (f-z(h(v))) to R. R can

now applyf:; to the latter to get

for (Fo(Fer(R(0)) = fo (fer(fer (R(0)))) = fu(h(v)).
Note thatR only getsf.. (h(v)) forv € Vg, notforv € Vs — Va.

4.2 Encryption Function x
We now formally define the encryption functidii(«, ext(v))
that encryptext(v) using the key:(v). K is defined to be a func-
tion
K: DomF X Vext — Coxs

with two properties:
1. Eachfunctionk«(z) = K(x,z) can be efficiently inverted
(decrypted) giver;
2. “Perfect Secrecy” [43]: For angxt(v), the value of
K (ext(v)) is indistinguishable from a fixed (independent
of ext(v)) distributionD.x: overCexs Whens €, Dom F.

v € Vs, letext(v) be all records irf’s whereTs. A = v.

1. Both.S andR apply hash functiot to their sets:
Xs = h(Vs) andXR = h(VR)
R chooses its secret keyy €, Key F, andS chooses two
secretkeyses,e’s € Key F.

. Rencryptsits hashed séfr = f.(Xr) = fer(h(Vr)).

. R sends taS its encrypted seYr, reordered lexicographi-
cally.

. S encrypts eacly € Yz with both keyes and keye’s, and
sends back t® 3-tuples(y, f.s(v), fefs(y))
= {fer(h(v)), fes(fer(R(v))), fer (fer(R(v)))).
. For each € Vs, S does the following:
(@) Encrypts the hast(v) with es, obtainingfe, (h(v)).
(b) Generates the key for extra information usilg
w(v) = fer (h(v)).
(c) Encrypts the extra information:
c(v) = K(k(v),ext(v)).
(d) Forms a paiffe;(h(v)), c(v))
= (fes(h(v)), K (for(h(v)), ext(v))).

The pairs are then shipped®in lexicographical order.

. R appliesf;R1 to all entries in the 3-tuples received at Step 4,

obtaining(h(v), fes (h(v)), for (h(v))) forall v € V.

. Rsetsaside all paifye; (h(v)), K (fer, (h(v)), ext(v))) re-
ceived at Step 5 whose first entry occurs as a second entry in
a 3-tuple(h(v), fes(h(v)), for (A(v))) from Step 6. Using
the third entryf.. (h(v)) = «(v) as the key,R decrypts
K (fe (h(v)), ext(v)) and getext(v). The corresponding
v's form the intersectio¥s N Vr.

8. R usesxt(v) forv € Vs N Vg to computel’s X Tg.
4.4 Proofs of Correctness and Security

STATEMENT 3. Assuming there are no hash collisioSdegarns
|Vr|, andR learns|Vs|, Vs N Vg, andext(v) forall v € Vs NVr.

PROOF This protocol is an extension of the intersection proto-
col, so it allowsR to determiné/s N Vg correctly. SinceR learns
the keyss(v) for values in the intersectio® also getsxt(v) for
veVsnNVr. O

Next we prove thai® and.S do not learn anything besides the
above. We first extend Lemma 2 as follows.



LEMMA 3. For polynomialn, the distributions of the following
two 3 x n-tuples

1 Tn 1 Tn
fe(xl) fE(x‘ﬂ) and | v Yn |,
fe’(xl) fe’(x‘n.) 21 Zn

are computationally indistinguishable, wheve : =z, y;,2; €,
Dom F, ande, e’ €, Key F.

PROOF Let us denote the left distribution 9, the right dis-
tribution by D, and the following “intermediate” distribution s

1 Tn
fe(z1) fe(zn)
21 Zn

The first and third line in the tuples f@, andD; are distributed
like Dy andDg (from Lemma 2) respectively. The second line in
bothD; andD; can be obtained from the first line by applyifig
with random keye. Therefore, sinc®;, andDg are indistinguish-
able by Lemma 2, distribution®; andDs are also indistinguish-
able.

Analogously, the first and second lines#ry and D, are dis-
tributed like DF and Dy, respectively. The third line in bot®s
and D, can be obtained by using random numbers for #lie.
Therefore, by Lemma 2Ds andD-, are also indistinguishable.

Finally, since bothD, andD- are indistinguishable fror®s,
they themselves are indistinguishablé.]

The following lemma will be used in the proof for the security
of the join protocol to show that the real and simulated views for
R are indistinguishableD; corresponds to the real view (fdt),
while D} corresponds to the simulated view. The firstolumns
correspondtds — (Vs N Vgr), the nextn —t columns toVs N Vg,
and the last: — m columns toVr — (Vs N Vr).

LEMMA 4. For polynomialm, ¢, andn, and anye; € Vexs, the
two distributionsD; and D} of the4 x n-tuple

Z1 Tt Tt41 Tm Tm41 Tn
Y Yt Y41 Ym  Ym+1 Yn
Zt41 Zm  2m41 Zn
& & it ém
such that

e ForD{,Vi: z; €, Dom F,y; = fe(x:), 20 = for(z:), and
& = K(fo(z:),ci) wheree, e’ €, Key F;
e For D}, Vi : z;,y;, 2z € Dom F, and
—¢=1...¢t: & is independent random with distribu-
tion Dexs,
—i=t+1l...m: & = K(zi,¢)
are computationally indistinguishable. (In bofy; and Dj, the
positions correspondingtg, . .. z: andé,m+1 - . . &, are blank.)

PrRoOF. Denote byD; the following “intermediate” distribu-
tion:

Vi: z5,ys, 2 € Dom F andé; = K (zi,¢:).

Note that thez; for« = 1...¢ are not included in the tuple, even
though they are used to gener&féz;, c;).

The only difference between the two distributiof’s and D;
is that, for: = 1...t, we replaceg; distributed asDexy With
K (z;,c¢;) wherez; €, Dom F; the rest of the matrix is indepen-
dent and stays the same. Singeis not a part of the matrix for

i = 1...¢, by Property 2 of encryptio& (, c), distributionsDs
andD; are indistinguishable.

Next we use Lemma 3 to show that distributids andD; are
also indistinguishable. We define functi@Q{ M) that takes 8 xn
matrix M (from Lemma 3) and generatesiax n matrix M’ as
follows:

1. The first 3 rows oM/’ are the same as the first 3 rowsdT,
except that the values correspondingto. .. , z: in M’ are
left blank.

2. The fourth row of#’ is generated by taking = K (zi, c:)
wherez; is the corresponding value of the third row .

If M is distributed likeD, of Lemma 3Q(M) corresponds t®; .
If M is distributed likeD,, Q(M) corresponds t@;. Since by
Lemma 3,D; andD. are indistinguishable, an@(M) is com-
putable in polynomial timeP; andDj; are also indistinguishable.

Finally, since bothD; andD; are indistinguishable fror®;,
they themselves are indistinguishablé.]

STATEMENT 4. The join protocol is secure if both parties are
semi-honest. At the end of the protoc8lJearns only|Vz|; R
learns only{Vs|, Vs N Vg, andext(v) for all v € Vs N Vg.

PROOF As in the proof of Statement 2, we will construct simu-
lators of each party’s view of the protocol, such that each simulator
is given only what the party is supposed to learn, and such that the
distribution of the real view is indistinguishable from the distribu-
tion of the simulated view.

The simulator forS is identical to that in Statement 2, sinSe
gets exactly the same input froR as in the intersection protocol.
Hence the proof from Statement 2 directly applies.

The simulator forR (that simulates whaR receives fron5) can
useh, er, Vr, Vs N Vg, ext(v) for v € Vs N Vg, and|Vs|. Let

Vs = {’01,
VR = {’Ut+1,

, Um} and
bl U"’-}'

Sot = |Vs — Vr|, m = |Vs|, andn = |Vs U Vr|. Note that the
simulator does not know the valuesia — Vr.

In Step 4, the simulator generatesrandom numberg; €&,
Dom F,: = 1...n as the simulated values fgt . (h(v:)), and
an additionak random numbers; €, Dom F as the simulated
values forf.. (k(vi)). The simulation then uses key to create

<f€R (h(’u.;)), fer (y‘b): fer (z1)>

forz = t+1...m. Thesetriplets are ordered lexicographically and
comprise the simulated view for Step 4.
In Step 5, the simulator creates the pairs as follows:

y Uty Y41, - ..

y Um,y Ym41, ...

e For valuesvit1, ..., v, from Vs N Vg, the simulator en-
cryptsext(v;) asé&; = K(z;, ext(v;)); then it forms pairs
{yi, &);

e Fori=1...t, the simulator createl¥’s — Vx| additional
pairs{y:, &) whereg; have distributionDeyx over Cey, i.€.,

y; and¢; are random values from their respective domains.

These pairs are sorted lexicographically and comprise the simulated
view for Step 5.

Settingz; = h(v;), the real view corresponds to distributitt
of the matrix in Lemma 4, while the simulation corresponds to dis-
tribution D of the matrix. The only difference is that some vari-
ables appear in the view encryptedfyy, , which makes the view a
efficiently-computable function of the matrix. Since thé¥eand
D; are indistinguishable, the simulation is also indistinguishable
from the real view. [



5.

5.1 Intersection Size

We now show how the intersection protocol can be modified,
suchthatR only learns the intersection size, but not which values in
Vr were present iVs. (Simply applying the intersection protocol
would reveal the séfr N Vs, in addition to the intersection size.)
Recall that in Step 4 of the intersection protoc®lsends back to
R the values ofy € Yr together with their encryptions made By
These encryptions are paired with the unencryptedo thatR can
match the encryptions witR'’s values. If instead sends back to
R only the lexicographically reordered encryptions of ¢f&eand
not they's themselvesR can no longer do the matching.

INTERSECTION AND JOIN SIZES

5.1.1 Intersection Size Protocol

We now present the protocol for intersection size. (Steps 1 througHy:+1, - - -

3 are the same as in the intersection protocol.)
1. BothS andR apply hash functio to their sets:

Xs = h(Vs) andXR = h(VR)

Each party randomly chooses a secret key:

es € Key F for § ander €. Key F for R.

. Both parties encrypt their hashed sets:
Ys = fes(Xs) = fes(h(Vs)) and
Yr = fer(XR) = fer(R(VR)).

. R sendstdS its encrypted se¥r = f..(h(Vr)), reordered
lexicographically.

. (@)S ships toR its setYs = f..(h(Vs)), reordered lexico-
graphically.
(b) S encrypts each € Yr with S’s keyes and sends back
to Rthe seZr = fe (Yr) = fes(fen(R(VR))), reordered
lexicographically.

. R encrypts each € Ys with er, obtaining
Zs = fen(fes(R(Vs))).

. Finally, R computes intersection sit8sNZr/|, which equals
|Vs N Vr|.

5.1.2 Proofs of Correctness and Security

STATEMENT 5. Assuming there are no hash collisioSdgarns
the sizgdVr| and R learns the siz¢Vs| and the sizéVs N Vr|.

PROOF The proofis very similar to that for Statement 1. Since
fes and f.,, commute and are bijective, assuming that hash func-
tion & has no collisions ois U Vg,

|VS N VR| = feR(fES(h(VS))) N fES(fER(h(VR)))'

ThereforeR recovers the correct siz&s N Vg|. O

STATEMENT 6. The intersection size protocol is secure if both
parties are semi-honest. At the end of the protoSdearns only
the sizgVr|, andR learns only the sizg¥’s| and|Vs N Vz]|.

PrROOF We use the same methodology as in the proofs of State-
ment 2 and 4.

The simulator forS’s view of the intersection size protocol is
identical to that in Statement 2, sinSegets exactly the same in-
put from R as in the intersection protocol. Hence the proof from
Statement 2 directly applies.

The simulator forR'’s view of the protocol is allowed to udéz,
the hash functiork, er, and the numberfVs N Vr| and |Vs|;
however, it has neithéfs — Vg norVs N Vg. Let

Vs = {’01,
VR = {’Ut+1,

, Uty Utt1, ..., Um} and

bl U"’-}'

Sot = |Vs — Vr|, m = |Vs|, andn = |Vs U Vg|.

The simulator generates random numbersy, ... ,yn €-
Dom F which play the role off.,(h(v)) for allv € Vs U Vr.
The keyes is not simulated, and no decision is made about which
y; stands for whicty. . (h(v)). In Step 4(a), the simulation creates
Ys as

y Um, Ym41, ..

YS = {yly"' ,ym}

In Step 4(b), the simulation generatdsr by taking set
. yn } and encoding it withye . :

Zr = {feR(yt-I-l):"' 7f€R(y’ﬂ)}'

We now show that the distribution @’s real view in the pro-
tocol is computationally indistinguishable from the distribution of
R'’s simulated view.

According to Lemma 2, the distributiorf2s andD;; of the fol-
lowing matrix M :

z T
(y1 yn)
where
o D : Vi:z;,y: € Dom F;
e D7 : Vi:z; €& Dom F,y; = fe (i), es €, Key F;

are indistinguishable. Gives; = h(v;), consider the following
function@(M):

Q(M) = {(h, er, Ys, Zr),

where
h := afunctiononVs U Vg s.t.Vi: h(vi) = z4;
er := arandom key
Ys = {y1,--- ,Ym};
Zr = {fer(yt+1), .-, fer(yn)}-

If M is distributed according t®7, thenQ(M) corresponds to
the simulated view of servek. If M'’s distribution isD;};, then

Y = fes(flii) = fes(h(’Ui)),
feR(yi) = feR(fes(xi)) = fes(feR(h(Ui)))l

and Q(M) is distributed like the real view oRR. Since from
Lemma 2,D7 and D7, are indistinguishable, ang is computable
in polynomial time, the simulated vie®(Dg) and the real view
Q(Dy,) are also indistinguishable.[]

5.2 Equijoin Size

To evaluate equijoin size, we follow the intersection size proto-
col, except that we alloWr andVs to be multi-sets, i.e., contain
duplicates, and then compute the join size instead of the intersec-
tion size in Step 6. HoweveR can now use the number of dupli-
cates of a given value to partially match value¥iwith their cor-
responding encryptions ifir. We now characterize exactly what
R andS$ learn in this protocol (besidé®r|, |Vs| and|Ve X Vs|).

To start with, R learns the distribution of duplicates s, and
S learns the distribution of duplicates Wr. To characterize what
elseR learns, let us partition the values ¥ based on the num-
ber of duplicates, i.e., in a partitioViz (d), eachv € Vr(d) has



d duplicates. Then, for each gition, R learns|Vz(d) N Vs(d')| Vr :=idsinTr.

for each patition Vs(d') of Vs. Thus if all values have the same V& = subset oW/ that match the DNA sequence.
number of duplicates (e.g., ho duplicates as in our intersection pro- Vs :=ids inTs that took the drug.

tocol), R only learns|Vr N Vs|. At the other extreme, if no two Ve := subset oVs with adverse reaction.

values have the same number of duplicaiesiill learn Ve N Vs. T gets IntersectionSiz@g, V).

T gets IntersectionSizeg, (Vs — V3)).
T gets IntersectionSiz&(r — V&), V).
6. COSTANALYSIS T gets IntersectionSiz&(r — V&), (Vs — V3)).

6.1 Protocols

Lot Figure 2: Algorithm for Medical Research Application
e

e eachencrypted codeword (om F) bek bits long, 6.2.1 Selective Document Sharing

° Ch denote the cost of eVaanting the hash function, Recall that we have two databas@& and DS, where each
database contains a set of documents, and a document consists of
a set of significant words. We wish to find all pairs of documents
dr € Dr andds € Dg such that, for some similarity function
e Cx denote the cost of encryption/decryptionKy(e.g., en- f and threshold-, f(|dr N ds|, |dr|, |ds|) > 7. For examplef
coding/decoding as a quadratic residue and multiplication), could be|dr Nds|/(|dr| + |ds|).
and

e (. denote the cost of encryption/decryption By(e.g., ex-
ponentiation £¥ mod p” over k-bit integers),

Implementation R andS execute the intersection size protocol
¢ nlogn - C, be the cost of sorting a set afencryptions. for each pair of documenttr € Dr andds € Ds to get|/dr N
) o ) ds|, |dr| and|ds|; they then compute the similarity functigh
We_ assume the obvpus_optlmlzatlons when computlng _th_e COM-  £or 5. in addition to the number of documers|, this pro-
putation and communication costs. For example, in the join pro- 40| als0 reveals t& for each documentz € Dg, which doc-

tocol, we assume that the protocol does not decgytat h(v) in uments inDs matcheddr, and the size ofdr N ds| for each
Step 6, but uses order preservation for matching. Also, in all the documentis € Ds.

protocols,S does not retransmit thgs back but just preserves the

original order. Cost Analysis For a given pair of documenttr andds, the
i ) . computation time i§|dr| + |ds]) - 2C., and the data transferred is
Computation The computation costs are: (ldg| + 2|ds]|) - k bits. Thus the total costis:
o Intersection:(Cr + 2C.)(|Vs| + [Vr|) + 2Cs|Vs|log | V5| e Computation]Dg| - |Ds| - (|dr| + |ds]) - 2C.
+3Cs|Vr|log V| o Communication|{Dg| - |Ds| - (|da| + 2|ds|) - k.
e Join: Cr(|Vs| + |Vr]) + 2C.|Vs| + 5C.|Vr| If |[Dr| = 10 documentsDs = 100 documents, antdr| =
+ Cx(|Vs| + |Vs N Vr|) + 2C|Vs|log | Vs| |ds| = 1000 words, the computation time will He<10° C./P ~
+ 3C;|Vr|log |Vr| 2 hour. The data transferred will lex 10° k ~ 3 Gbitsx 35
minutes.
We can assum€. > Cp, C. >» Ck, andnC. > nlogn - Cs,
so these formulae can be approximated by 6.2.2 Maedical Research
o Intersection2C.(|Vs| + |Vz|) Recall that we wish to get the answer to the query
e Join: 2C.|Vs| + 5C.|Vr| select pattern, reaction, count(*)
from Tr,Ts
Communication The communication costis: where Tr.id = Ts.id andT’s.drug = true

e Intersection:(|Vs| + 2|Vr|) - k bits group by Tr.pattemTs.reaction
e Join: (|Vs| + 3|Vr|) - k + |Vs| - k' bits, wherek’ is the size
of the encryptedxt(v). Implementation Figure 2 shows the implementation algorithm.
We use a slightly modified version of the intersection size protocol

whereZr andZs are senttd’, the researcher, instead of§cand

R. Note that whenever we have, s§}/z — V&) inside Intersec-
tionSize, the set difference is computed locally, and the result is the
input to the protocol.

whereTr andT’s are tables in two different enterprises.

Both the intersection size and join size protocols have the same
computation and communication complexity as the intersection pro-
tocol.

6.2 Applications

We now estimate the execution times for the applications in Sec-
tion 1.1.

For the cost ofC. (i.e., cost ofz¥ mod p), we use the times
from [36]: 0.02s for 1024-bit numbers on a Pentium Ill (in 2001).
This corresponds to arourfdk 10° exponentiations per hour. We
assume that communication is via a T1 line, with bandwidth of
1.544 Mbits/second¢ 5 Gbits/hour). 7. CONCLUSIONS

Encrypting the set of values is trivially parallelizable in all three We identified information integration with minimal sharing as a
protocols. We assume that we ha¥@rocessors that we can utilize  new area for future database research. We developed novel pro-
in parallel: we will use a default value @& = 10. tocols for three key operations: intersection, intersection size, and

Cost Analysis The combined cost of the four intersections is
2(|Vr|+1Vs|) - 2C., and the data transferred2§| Ve | + |Vs|) - 2k
bits. If |Vr| = |Vs| = 1 million, the total computation time will be
8% 10° C./P = 4 hours. The total communication time will be
8x10° k ~ 8 Gbits~ 1.5 hours.
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APPENDIX
A. CIRCUIT-BASED PROTOCOLS

For comparison, we estimate the computation and communica-
tion cost of intersection and join protocols obtained using the semi-
honest variant of Yao's protocol described in [33, 37]. I/etand
Vr containw-bit values. Consider a functiofi(z, §) that takes
vectorsz andy (of sizew - |Vs| andw - |Vr| respectively) as inputs
and returns a vectat (of size|Vr|) that shows which oR’s values
also belong td/s. This function can be represented by a circuit of
boolean gatesS hardwires its inpug into the circuit and supple-
ments each possible encrypted bit value at each circuit wire with its
own random key (used for decrypting the next gate’s output and its
key). The protocol has two major steps:

Coding R's input: For each bit ofy, R engages withS in a
1-out-of-2 oblivious transfer protocol [36, 39] and gets the
corresponding supplemental keys.

Computing the circuit: For each gateR receives a table from
S and, using the keys for the gate’s inputs, computes the out-
put and its key. In the procesg, applies a pseudorandom
function twice per each output wire.

To getf(Z, §), R gets the tables that allow it to decrypt the wires
with the output of the circuit.

A.1 Cost Analysis

Let the keys (for the circuit gates) ke bits long, and”’. be the
cost of pseudorandomfunction evaluation. We assumexthzat32
(recall thatw is the size in bits of the input valued), = 64, and
|VE| = |Vs| = n.

A.1.1 Coding the Input

Let Cos be the computation cost of each oblivious transfer, and
C!, its communication cost. An efficient protocol for oblivious
transfers is given in [36]. For any integkr> 0, this paper gives a
protocol with amortized cost
2t 2t
T'Cx§ Cor > T.kl
whereC'x is the cost of multiplication, and, is the size of the
keys used in oblivious transfer. We assukae= 100 [36]. As-
sume that’. = 1000 Cx; then the best choice with respect to the
computation time i$ = 8, and the costs become

Cot = 0.157 Ce; Cc/>t > 32k .

Cot:%'ce‘i'

Cost The computation cost of coding the input is
w-|Ve|-Cot =32 xnx0.157C. 2 5nC.

trieval with secure coprocessors. Research Report RC 21806,and the communication cost is
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w-|Ve|-Cly >32xnx32k =10°n

A.1.2 Evaluating the Circuit

Let C(w,|Vs|, |Vr]|) be the total number of gates required for
the circuit. We estimate lower bounds on the number of gates re-
quired for a brute force algorithm, and a more efficient partitioning
algorithm.

Let G. be the number of gates required to compare twbit
numbers in the circuit to determine whether they are equalG.et
be the number of gates required to determine which number is less
than (or equal to) the other.

Brute Force Circuit Consider a circuit that compares every num-
ber inVr with every number if’s, and then merges the results to



output just the numbers Wr that were equal to at least one num- n m f(n) .
ber inVs. The number of gate§(w, |Vs|, |Vz|) in this circuit is 10,000 11 2.3x10
greater than 1milion 19 7.3x10'°
illi 13
[Vg| - |Vs| - Ge. 100 million 32 1.9x10

o - ) The brute force circuit does much worse, witHw, |Vr|,|Vs|)
Partitioning Circuit  We assume that each sBt and Vs is equal to6.3x 10°, 6.3 x 10'*, and6.3x 107 respectively.

given to the circuit in the form of an ordered array, with all du- ) o
plicates removed. Instead of comparing all pairs of numbers, we C0St  For each gate in the circuiff gets a table front whose
can split these arrays inie intervals (non-interleaving subarrays) ~SiZ€ iS4ko, and evaluates 2 pseudorandom functions. Therefore
of size|Vg|/m and|Vs|/m. For ease of expition, we assume the computation cost of circuit evaluation is
that|Ve| = |Vs| =n, :;md _tham is a power of_m. 20, - C(w,|Vs|,|Vr|) = 2C- f(n)

Outof all possibler“ pairs of subarrays, with one subarray from o )
Vs and the other fronVz, only at most2m — 1 pairs may have  and the communication cost is
a nonempty mtersec_tlon; the oth_ers are pairs of nor_l-lnterleavmg 4ko - C(w,|Vs|, |Vr|) = 256 - f(n).
subarrays. To see this, note that in a pair of interleaving subarrays _ )
the beginning of one subarray must be within the interval spanned A.2 Companson with Our Protocol
by the other. There is at most one pair per one such “internal be- ) ) )
ginning.” There ar@m subarrays in botlYs andVz, each having ~ Computation  We get the following computation costs:
only one beginning; and the smallest beginning is always “wasted,” n Circuit Our Protocol
thus Iimi_ting_ the number of interleaving pairs fon — 1. Input (OT) [ Evaluation

The circuit has to choose_thbn -1 mterleawr)g pairs c_Jf sub-_ _ 10° | 5x10°C. | 4.7x10°C, 4x10°C.
arrays and then use recursion to compute set intersections within 10° | 5x10°C. | 1.5%10' C 4x10°C,
these pairs. To check whether a pair of subarrays interleaves, we 8 s ’ 13 8

10 5x10°C. | 3.8x10°C, 4%x10°C.

need to compare the smallest and largest numbers of these subar- : : - _
rays, thus making 2 comparisons. Therewrepairs, so we need  The cost of coding the input for the circuit is slightly higher than
2m? comparisons, and hen@en® G, gates. Additional gates are  the cost of our protocol. The total cost of the circuit (relative to
needed to reroute the subarrays and combine the recursive outputur protocc;l) depsnds on the ratio 6f to C.. While C. > C.,
but we shall ignore them in our estimation, since we are interested there arel0® to 10” as many calls t&, as there are t6’.. Thus
primarily in a lower bound for the cost of the circuit (using this our protocol will be substantially faster &, > C./10000, and

algorithm). slightly faster otherwise.
Let f(n) be the cost of the circuit. Then Communication The communication costs (in bits) are:
f(n) > 2m°Gi + (2m — 1) - f(n/m) n Circuit Our Protocol
flly = G. . InputEEOT) Circuit (Taltgles) .
10 10 6.0x10 3x10
Letc = 2m?Gy; then
ete = 2m’Gi; the 10° | 10 1.8x 108 3% 10°
fn) > ¢+ (2m—1)-f(n/m) 10° 10' 4.9% 10" 3x 10"
> ¢+ (2m—1)-(c+ (2m - 1)f(n/m?)) The circuit-based protocol requiré800 to 10, 000 times as much
log,, n—1 ‘ communication as our protocol. Far= 1 million, the communi-
> ¢ > (2m—1)" + (2m—1)°8 " f(1) cation time for the circuit-based protocol is 144 days (using a T1
i=0 line), versus 0.5 hours for our protocol. The communication cost
(2m — 1)l°&m™ — 1 log,. n m_ake_s the circuit-based protocol impractical for database-size ap-
= T Gm-o1)-1 + (2m 1) Ge plications.
log,, (2m—1) _ 1
_ . n log . (2m—1)
- c m—2 " Ge
c (o8, (2m—1) 1
<2m 2 Ge) (m )

Substituting back the value fer we get
2

f(n) > <mm— 1 G +Ge> .(nlogm(2m—1) _ 1)

Two w-bit numbers can be checked for equality ustag-1 binary
gates and compared usibg — 3 gates. Settings; = 5w — 3 and
G. =2w — 1gives

2

f(n) > <mni 1 (5w — 3) + (2'w — ]_)> . (nlogm(2m—1) _ 1)

Brute Force vs. Partitioning Let|Vr| = |Vs| = n. (As before
w = 32 andko = 64.) Then, for the partitioning circuit, we get
the following values foiC'(w, |Vr|, |[Vs|) = f(n) for the optimal
value ofm:



